
© 2020. California Institute of Technology. Government sponsorship acknowledged 1

An Evaluation of the CAN bus for Use on the Europa Lander

Motor Controller
Hieu Tran, Gary Bolotin, Ben Cheng, Allen Sirota, Malcolm Lias

Jet Propulsion Laboratory, California Institute of Technology.
4800 Oak Grove Dr.
Pasadena, CA 91109

Hieu.C.Tran@jpl.nana.gov, Gary.Bolotin@jpl.nasa.gov,
Ben.Cheng@jpl.nasa.gov, Allen.R.Sirota@jpl.nasa.gov,

Malcolm.Lias@jpl.nasa.gov

Summary — This paper will present the application

of the Controller Area Network (CAN) for

communication between the Motor Control

Processor and the Europa Lander Motor Control

Cards. The Europa Lander preproject team is

concerned about lowering the estimated mass,

volume, and power of the mission concept so that it

could maximize its science return. The motor

controller uses multiple Motor Control Cards to

control the 24 motors that will be operating in the

extremes of the Europa environment. The CAN bus

was considered because of its multi-drop nature, low

power interface, and simple communication

protocol. Beyond communication with the motor

controller cards we also use the CAN bus interface

to gather telemetry from the Power Conversion

Card. Our system requires the collection of

telemetry at a rate of 64Hz from the Power

Conversion Card and all active motor controllers

along with the sending of control packets and the

receipt of control parameters at 512 Hz. In the

paper we will address the ability of the CAN bus to

meet these requirements along with our Arduino

based test system used to learn about the CAN bus

standard and verify our analysis.

Table of Contents
1. INTRODUCTION ... 1
2. BACKGROUND OF CAN BUS 2
3. APPROACH ... 3
4. MCC & PCC DATA REQUIREMENTS 3
5. CAN BUS 2.0A IMPLEMENTATION 3
6. ARDUINO SIMULATION ... 6
7. LATENCY ... 6
8. FUTURE WORK .. 7
9. CONCLUSION ... 7
10. REFERENCES ... 7
11. BIOGRAPHY ... 8

1. Introduction
The Europa Lander is a proposed NASA astrobiology

mission to Europa, an icy moon of Jupiter. If funded and

developed as a Flagship mission, it would be launched

as soon as 2025 to complement the studies by the

Europa Clipper orbiter mission and perform analyses on

site. The objectives of the mission concept are to search

for biosignatures at the subsurface ≈10 cm, to

characterize the composition of non-ice near-

subsurface material and determine the proximity of

liquid water and recently erupted material near the

lander's location. [1]

The savings in the predicted mass and volume of the

Europa Lander was the leading driver that led to a

miniaturized motor controller currently planned for use

on the mission. As illustrated in figure 1, the design

consists of a computer card along with enough Motor

Control Cards (MCC) necessary to control 12 motors.

Each motor card can control up to three motors. Only

one motor can run at a time per card. Those Motor

Control Cards along with the Power Conversion Card

(PCC) communicate to Motor Control Processor (MCP)

by means of the CAN bus interface. [2]

Figure 1: Europa Lander Motor Controller

Motor Control Processor

Power Conversion Card

Motor Control Card [1]

Motor Control Card [2]

Motor Control Card [3]

Motor Control Card [4]

Motor Control Card [5]

Motor Control Card [6]

Motor Control Card [7]

Motor Control Card [8]

C
o

m
m

u
n

ic
at

io
n

 B
u

s

mailto:Hieu.C.Tran@jpl.nana.gov
mailto:Gary.Bolotin@jpl.nasa.gov
mailto:Ben.Cheng@jpl.nasa.gov
mailto:Allen.R.Sirota@jpl.nasa.gov
mailto:Malcolm.Lias@jpl.nasa.gov

© 2020. California Institute of Technology. Government sponsorship acknowledged 2

2. Background of CAN bus
A Controller Area Network (CAN) bus is a robust bus

standard designed to allow microcontrollers and

devices to communicate with each other's applications

without a host computer. The CAN bus was originally

designed for the automotive industry. The CAN bus has

been used in various fields of industrial automation,

marine, medical equipment, industrial equipment, and

the aerospace industry. [3] The CAN bus

communication protocol is widely recognized for its

high performance and reliability and has been used in

space flight applications. The benefits of CAN bus are

speed, flexibility, and reliability. The CAN bus offers

signal transfer rates up to 1 Mbps with a cable length of

up to 40m. The CAN bus is a flexible standard because

all nodes are equal; there is no master slave relationship.

Also, as shown in figure 2, the CAN bus is reliable

because CAN-Hi and CAN-Lo independently carry the

data, the bus can still function if one signal line is

broken, albeit with lower noise rejection. [4]

Figure 2: Typical CAN bus Implementation [5]

When data are transmitted over a CAN network no

individual nodes are addressed. Instead the message is

assigned an identifier which defines the message

contents and the message priority. As shown in figure

3, 4, and 5, a CAN message consists of an identifier

field and the data field. The identifier field can have 11

bits (Standard CAN) or 29 bits (Extended CAN). The

data field can have a maximum of 8 bytes. Also, as

shown in table 1, full length of the standard CAN

message is 108 bits and extended CAN message is 128

bits [6].

Figure 3: Standard CAN: 11-Bit Identifier (2.0A) [5]

Figure 4: Extended CAN: 29-Bit Identifier (2.0B) [5]

Figure 5: Standard CAN FD 11-Bit Identifier [7]

Table 1: The Bit Fields of Standard CAN (2.0A) [5]

On the CAN bus, all nodes are equal. There is no such

thing as a bus master. This is made possible by the

arbitration process during the idle time between

messages. The priority of CAN bus message is based on

the data and not where it came from.

When there are two or more messages sent

simultaneously, the arbitration process causes

controllers with lower priority messages to enter the

receiving mode. The unsung controllers wait until the

end of the transmission intermission field before they

attempt to communicate again. As soon as the bus is

detected as idle, the CAN node sends an SOF (Start of

Frame) bit by putting a dominant (low) level onto the

bus. Every other node in the network, that did not

request bus access, will immediately switch to a

receiving mode. Then, the CAN controller sends the

message ID. Then, all the CAN controller of all nodes

will compare their output signal with the actual bus

level at the end of each bit cycle. In the meantime, any

node will lose the arbitration, in case it did send a

recessive level (high) and detects a dominant (low) bus

level. Consequently, all those nodes will switch into

receiving mode. If the node has finished sending all

arbitration bits (message ID plus RTR) without losing

the bus arbitration, it will transmit the rest of the

message. At this time all other CAN nodes in the

network will have switched to receiving mode.

There are three variants of the CAN bus standard that

were evaluated; Standard CAN(2.0A), Extended

CAN(2.0B) and the Standard CAN with Flexible Data

(Standard CAN FD). [7]

© 2020. California Institute of Technology. Government sponsorship acknowledged 3

Standard CAN(2.0A) has the following features:

• 11-bit Identifier

• Maximal CAN message payload can only

reach 8 bytes, so full standard CAN message

have total 108 bits.

• Max speed 1Mb/s

Extended CAN(2.0B) has the following features:

• 29-bit Identifier

• Maximal CAN message payload can only

reach 8 bytes, so full extended CAN message

have total 128 bits.

• Max speed 1Mb/s

Standard CAN FD has the following features:

• 11-bit Identifier

• The allowed message payloads of CAN FD

are 1/2/3/4/5/6/7/8/12/16/20/24/32/48/64 bytes

• CAN FD can improve the transmission bit-rate

of CAN to as much as 12 Mbps

This paper presents and evaluation of Standard

CAN(2.0A). The other buses present additional

features and capabilities that will need to be evaluated

in the future.

3. Approach
The SPI bus, SpaceWire, and CAN bus were all

considered as a means of communication between our

cards. The CAN bus was considered for evaluation

because of its multi-drop nature, low power interface,

and simple communication protocol. This paper

outlines this evaluation.

The implementation of CAN bus interface into the

Europa Lander Motor controller required us to map our

telemetry and command requirements to the CAN bus

protocol. This required a specific protocol for the

Motor Control Cards and another one for the Power

Conversion Card. We then did an analysis of the bus

bandwidth required relative to the capability of the bus

standard.

To learn about the bus and to test out the mapping of

our protocol to the CAN bus standard we used an

Arduino based system for testing. This enabled us to

get experience about the bus and to verify our

assumptions and models.

4. MCC & PCC Data Requirements
Before beginning our analysis, we started by first

compiling the data requirements between the Motor

Control Processor (MCP) and the Motor Control Cards

(MCC). The data requirements can then be mapped onto

the different standard CAN bus protocols.

As illustrated in table 2, the MCCs are required to

send back resolver position and velocity, motor phase

currents to the MCP at a rate of 64hz. This data is used

for telemetry collection. The MCCs need to send

primary resolver position information along with

position commands at a rate of 512hz. This data is used

for control of the motors. The requirements list the data

required to control 1 motor.

Table 2: MCC Data Requirements (1 Card)

As illustrated in table 3, the Power Conversion Card

(PCC) is required to send back the status of the voltage

and current for each of its output power rails. In

addition, it sends back status information on its

assessment of its own health. This data is required to

be transferred back to the processor every 64 Hz.

Table 3: Power Conversion Card Data Requirements

5. CAN Bus 2.0A Implementation

I. Adaptation to Standard:
Based on the requirement for the Europa Lander, the

motor controller uses multiple Motor Control Cards to

Register Data Bits Hz Total Direction

Resolver Position 16 64 1024 To MCP

Resolver Odometry 16 64 1024 To MCP

Resolver Velocity 16 64 1024 To MCP

Current Phase A 16 64 1024 To MCP

Current Phase B 16 64 1024 To MCP

Current Phase C 16 64 1024 To MCP

PWM Duty Cycle 16 64 1024 To MCP

Kirchoff Current 16 64 1024 To MCP

Bridge Current 16 64 1024 To MCP

Compesation Current 16 64 1024 To MCP

Current Limit 16 64 1024 To MCC/FGPA

Current Command 16 512 8192 To MCC/FGPA

LVDT Postion 16 512 8192 To MCP

LVDT Odometry 16 512 8192 To MCP

LVDT Velocity 16 512 8192 To MCP

Motor 1

or

Motor 2

or

Motor 3

Register Data Bits Hz Total To

Temperature PRT 1 16 64 1024 to MCP

Temperature PRT 2 16 64 1024 to MCP

28V Power Monitor 16 64 1024 to MCP

15V Power Monitor 16 64 1024 to MCP

12V Power Monitor 16 64 1024 to MCP

5V Power Monitor 1 16 64 1024 to MCP

5V Power Monitor 2 16 64 1024 to MCP

5V Power Monitor 3 16 64 1024 to MCP

3.3V Power Monitor 16 64 1024 to MCP

2.5V Power Monitor 1 16 64 1024 to MCP

2.5V Power Monitor 2 16 64 1024 to MCP

Status/Fault Word 1 16 64 1024 to MCP

Status/Fault Word 2 16 64 1024 to MCP

TBD Word 1 16 64 1024 to MCP

Command Word 1 16 64 1024 to MCC/FPGA

Command Word 2 16 64 1024 to MCC/FPGA

Power

Card

© 2020. California Institute of Technology. Government sponsorship acknowledged 4

control the 24 motors, and each Motor Control Card can

control 3 motors. The CAN bus for our system operates

at 1 MHz. As illustrated in figure 6, each of the cards

connects to a common CAN bus network.

Figure 6: Europa Lander Motor Controller CAN Bus

Implementation

In the CAN bus protocol, there is no concept of a

master and a slave. Nor is there a concept of a node

address. Instead, messages are given unique identifiers

based upon message type. The standard assigns priority

to these messages based upon their type.

For Europa Lander Motor Controller, as in other real

time systems, we have a requirement to have consistent

latency for our control, and telemetry communication.

We typically achieve this by have remote nodes on a

network send data only when requested by the

processor. This enables the processor to control the bus

communication and predictable latencies throughout

the system.

Table 4: Motor Control Data Frame Definition

For our initial mapping to CAN bus we control

latencies by requiring the slave nodes to only send data

when requested by the host through a POKE command.

As illustrated in Table 4, the POKE command is a

simple packet with no data in the data frame. A

different POKE command is created for each data type

requested. The assignment of priorities is done based

upon the 11-bit ID field. The first 5 bits define the type

of data requested with the next 6 bits defining the node

the data is requested from.

The requested data is returned through standard CAN

messages with bits allocated in the data frame for the

group number, slave id and returned data.

The Standard CAN data frame is limited to 8 bytes

of data. The telemetry from our motor controllers is

many bytes more than this limitation. We get around

this by breaking the telemetry into 8-byte groups.

When requested by the host through the POKE

command the requested data is identified by the NODE

ID of the slave along with the GROUP the data is

requested from. Table 5 shows the way how we

separate all the telemetry into 10 groups data for motor

card, and 5 groups data for power card.

Table 5: Group Assignments

II. Analysis transmission time

Once we have completed the mapping of our

required transmissions to the CAN bus protocol,

the next step is to perform an analysis to show that

our data requirements can be met. Based on the

Motor Control Data Frame Definition in table 4, we

can see that the full CAN message have 108 bits.

Theoretically, the speed of CAN bus is 1Mb/s.

Therefore, for sending a CAN message with 108

bits, the bus takes 108 µs without any error, any

delay and any latency. Hence, we have the detailed

time for each CAN Message in table 6.

Motor
Card 5

Motor
Card 6

Motor
Card 7

Motor
Card 8

Power
Card

Motor
Card 1

Motor
Card 2

Motor
Card 3

Motor
Card 4

CPU
Card

CAN-Hi

CAN-Lo

CAN2.0A

Frame

Command Node ID

Number of Bits 5 6 8 8 8 8 8 8 8 8

Write Command 0x00 Slave-ID REG - ID 0x0F Null Null Null Null

Read Command 0x01 Slave-ID REG - ID Null Null Null Null Null Null Null

Response

command of

Power

0x02 Host-ID REG - ID Slave-ID Null Null Null Null

Response

command of

Motor Card

0x03 Host-ID REG - ID Slave-ID Null Null Null Null

Write 512Hz 0x04 Slave-ID 0x0F 0x0F

Poke 512Hz 0x05 Slave-ID

Response poke

512Hz
0x06 Host-ID Group 10 Slave-ID

Write 64Hz - to

Motor Card
0x07 Slave-ID 0x0F 0x0F

Write 64Hz - to

Power Card
0x08 Slave-ID 0x0F 0x0F

Poke 64Hz 0x09 Slave-ID

0x0A Host-ID Group A Slave-ID

0x0A Host-ID Group B Slave-ID

0x0A Host-ID Group C Slave-ID

0x0A Host-ID Group D Slave-ID

0x0A Host-ID Group E Slave-ID

0x0B Host-ID Group 1 Slave-ID

0x0B Host-ID Group 2 Slave-ID

0x0B Host-ID Group 3 Slave-ID

0x0B Host-ID Group 0 Slave-ID

16 bits data

16 bits data 16 bits data 16 bits data

Response poke

64Hz data -

Motor Card

16 bits data 16 bits data 16 bits data

16 bits data 16 bits data 16 bits data

16 bits data 16 bits data

16 bits data

16 bits data 16 bits data 16 bits data

16 bits data 16 bits data 16 bits data

Response poke

64Hz data -

POWER CARD

16 bits data 16 bits data Null
16 bits data 16 bits data 16 bits data

16 bits data 16 bits data

16 bits data 16 bits data Null

Null Null Null Null

Null Null Null Null

16 bits data 16 bits data 16 bits data

Current limit Null

16 bits data

16 bits data

16 bits data

16 bits data Null Null

Null

ID (11 bits) Data Frame (0-8 bytes)

Group (Hex) Freq Signal (Hz) Decription From

0x00 64 6 bytes data of all motors

0x01 64 1st - 6 bytes data of Motor 1

0x02 64 2nd - 6 bytes data of Motor 1

0x03 64 3rd - 6 bytes data of Motor 1

0x04 64 1st - 6 bytes data of Motor 2

0x05 64 2nd - 6 bytes data of Motor 2

0x06 64 3rd - 6 bytes data of Motor 2

0x07 64 1st - 6 bytes data of Motor 3

0x08 64 2nd - 6 bytes data of Motor 3

0x09 64 3rd - 6 bytes data of Motor 3

0x0A 64 1st - 6 bytes data of Power Card

0x0B 64 2nd - 6 bytes data of Power Card

0x0C 64 3rd - 6 bytes data of Power Card

0x0D 64 4th - 6 bytes data of Power Card

0x0E 64 5th - 6 bytes data of Power Card

0x10 512 512 Hz Signal of Motor 1

0x11 512 513 Hz Signal of Motor 2

0x12 512 514 Hz Signal of Motor 3

 Motor

Card 1

 Power

Card

 Motor

Card 1

© 2020. California Institute of Technology. Government sponsorship acknowledged 5

Table 6: Time Analysis – Closing loop with an MCC

and a PCC at the rate of 64 Hz and 512 Hz

As illustrated in table 6, for the system with an MCP,

a PCC and an MCC, total bus traffic is nearly 300kbps.

Therefore, we could easily see that with the speed

1Mbps, the Standard CAN was too slow for our

application with 8 MCCs running at the same time.

However, in the future, we will be closing the loop

within the FPGA for reducing the bandwidth

requirements for the system, so our system only

requires the collection of all telemetry at a rate of 64Hz.

Therefore, the total bus traffic for system with 1 MCP

+ 1 PCC + 8 MCC is:

Total = Total a PCC response + Total an MCC

 response * 8 + LVDT information 64Hz * 8

= 36352 + 71,936*8 + 3*108*64*8

= 777,728 bits/s

Consequently, total free bandwidth is 22.23% (about

23 kbps). Therefore, the standard CAN will work in this

way. For more detail, we can analysis with the time line

of the bus traffic. We are using the major time frame is

1 cycle of 64 Hz signal (15625 µs) and minor time

frame is 1 cycle of 512 Hz signal (1953µs). In other

words, we know that 1 cycle of 64 Hz signal equal 8

cycles of 512 Hz signal. In each minor time frame, it

has all full telemetry for 1 motor card (3 motors).

Therefore, in major time frame, it has total 8 minor time

frames for 8 motor cards.

Figure 7: First and Second of Minor Time Frame with

8 MCCs at the rate of 64 Hz

Figure 8: First and Second of Minor Time Frame with

8 MCCs and PCC at the rate of 64 Hz

As shown on the figure 7 and 8, we are using time

frames for sending message, so for the synchronization

between nodes and our initial mapping to CAN bus we

control latencies by requiring the slave nodes to only

send data when requested by the host through a POKE

command. After the Power Card or Motor Card receive

the Poke command from CPU card, they send back all

the telemetry to the CPU card. Based on the 11-bits ID

and 1-bytes group ID and 1-byte for nodes ID in

standard CAN message, the CPU can know exactly

where the CAN message come from and what telemetry

data are contained in the message. Consequently, as

shown in figure 7, all 8 parts of the 64 Hz cycle have

25.9% free bus traffic, so the total free bandwidth is

25.9% for 8 MCCs. Also, as shown in the figure 8, the

first part of 64 Hz cycle has 18.9% free bus traffic; the

second, third, fourth, or fifth part has 18.1% free bus

traffic; the sixth, seventh, or eighth part has 25.9% free

bus traffic; so, the total free bandwidth is about 21.13%

for 8 MCCs and a PCC.

CAN

2.0A
Group

Data

(bits)

Overhead

(bits)

Full Msg

(bits)
Hz

Total

(bits/s)

 Sum

(bits/s)

Poke 0 44 44 64 2816

A 48 44 92 64 5888

B 64 44 108 64 6912

C 64 44 108 64 6912

D 64 44 108 64 6912

E 64 44 108 64 6912

Poke 0 44 44 64 2816

3 motors 0 64 44 108 64 6912

1 64 44 108 64 6912

2 64 44 108 64 6912

3 64 44 108 64 6912

4 64 44 108 64 6912

5 64 44 108 64 6912

6 64 44 108 64 6912

7 64 44 108 64 6912

8 64 44 108 64 6912

9 64 44 108 64 6912

Poke 0 44 44 512 22528

512Hz

Signals

Motor 1

10 64 44 108 512 55296

512Hz

Signals

Motor 2

11 64 44 108 512 55296

512Hz

Signals

Motor 3

12 64 44 108 512 55296

296,704

1,000,000

70.33%

Closing loop of an MCC and a PCC (bits/s)

Speed of CAN BUS (bits/s)

Percent Total Bandwidth Available

188,416

 36,352

 71,936

Response

Power

Card

Response

Motor 1

Response

Motor 2

Response

Motor 3

8 Motor Cards

with LVDT 64Hz

Poke 64

Response Poke 64 -

Power Card

Response Poke 64 -

Motor Card

NOTE

8 Motor Cards

with LVDT 64Hz

Poke 64

Response Poke 64 -

Power Card

Response Poke 64 -

Motor Card

NOTE

FreeMotor Card 2

all 3 Motor 1 Motor 2 Motor 3
LVDT

Motor 1,2,3
25.9%

108

G0

108

G1

108

G2

108

G3

108

G4

108

G5

108

G6

108

G7

108

G8

108

G9

108

G10

108

G11

108

G12

44

 1/8 Cycle of 64Hz - 2nd part

 (1/64Hz = 15625 = 8*1953 micro second)

FreeMotor Card 1

108

G10

108

G11

108

G12

LVDT

Motor 1,2,3
25.9%all 3 Motor 1 Motor 2 Motor 3

108

G1

108

G2

108

G3

108

G4

108

G5

108

G6

108

G7

108

G8

 1/8 Cycle of 64Hz - 1st part

 (1/64Hz = 15625 = 8*1953 micro second)

44

108

G9

108

G0

Power Card and

8 Motor Cards

with LVDT 64Hz

Poke 64

Response Poke 64 -

Power Card

Response Poke 64 -

Motor Card

NOTE

Power Card and

8 Motor Cards

with LVDT 64Hz

Poke 64

Response Poke 64 -

Power Card

Response Poke 64 -

Motor Card

NOTE
Group

B
18.1%

Motor Card 2 and Group B of Power Card

Motor 1 Motor 2 Motor 3
LVDT

Motor 1,2,3

108

G12

108

G3

108

G4

108

G5

108

G6

108

G7

108

G8

108

G9

108

G10

108

G11

Free

 1/8 Cycle of 64Hz - 2nd part

 (1/64Hz = 15625 = 8*1953 micro second)

44 44

all 3

108

G0

108

G1

108

G2

Motor Card 1 and Group A of Power Card

108

44

92

Group

A
18.9%

Free

all 3 Motor 1 Motor 2 Motor 3
LVDT

Motor 1,2,3

108

G0

108

G1

108

G2

108

G3

108

G4

108

G5

108

G6

108

G7

108

G8

108

G9

108

G10

108

G11

108

G12

 1/8 Cycle of 64Hz - 1st part

 (1/64Hz = 15625 = 8*1953 micro second)

44

© 2020. California Institute of Technology. Government sponsorship acknowledged 6

6. Arduino Simulation

For simulating and demonstrating the real system

response, the Arduino UNO microcontroller was

chosen as the desired hardware platform. The Arduino

IDE using the Arduino complier served as our software

development environment. Both Arduino UNO and

Arduino IDE are open source and freely with no

proprietary intellectual property costs. As shown in

figure 9, the Arduino UNO was interfaced with the

Arduino Controller Area Network Bus (CAN bus)

shield which is also open hardware, and was interfaced

with TFT Touch Screen shield for controlling and

monitoring all the testing data. [8]

Figure 9: Wiring Diagram of Arduino is connected

with CAN bus Shield and TFT Touch Screen Shield.

As shown in the figure 10, one Arduino simulated the

computer card. The other one simulated the power

card’s microcontroller. The computer card has two

modes of operation: writing data to power card node

and reading data from power card node.

• Writing command: The computer card generates

data, displays it on the screen and sends it to the

power card by CAN 2.0A message. Then, the

power card displays the data on the screen

• Reading Command: The computer card sends the

read request to the power card by CAN 2.0A

message. The power card generates the data and

displays on screen. Then, it sends back the data to

the computer card by CAN 2.0A messages. The

computer card receives the data and displays on the

screen.

• All commands are controlled by touch screen. Also,

all data are easily monitored on the screen by both

the rolling bar and number.

• The data are voltage, current and temperature.

The Arduino UNO performed CAN bus

communication using the CAN bus shield. The CAN

bus shield uses the MCP2515 CAN bus controller

coupled with a Serial Peripheral Interface (SPI) and a

MCP2551 CAN bus transceiver. A total of 2 Arduino

UNO was coupled with 2 CAN bus shield and 2 TFT

Touch Screen to form the CAN bus network topology

comprising of Master/Host and Peripheral/Slave CAN

bus nodes. The master node is used to simulate the

microprocessor GR712, and the slave node is used to

simulate the Power Conversion Card and the Motor

controller Cards. Based on the design of the CAN 2.0

data frame, the system was working well. The Slave

node is used to simulate to generate the signals for the

voltage, current and temperature as the power card. The

master node with the Touch Screen is used to simulate

to monitor and control the slave node as the

microprocessor.

Figure 10: The interface of 2 TFT Touch Screen of

Computer card (master) and Power Card (slave)

7. Latency

As shown on table 8, it is important to consider the

latency of our system. Latency is dominated by the

microprocessor, CAN controller, CAN transceiver, and

the bit stuffing. These factors are beyond the bandwidth

of the physical layer and contribute to effective

throughput of the system.

▪ The latency of the microprocessor (propagation

latency) and refers to the time to process the last

message and start another one. This time depends

on the speed of the microprocessor and the

implementation code. This latency can be reduced

by using a high-speed processor, a Field

Programmable Gate Arrays (FPGA), and a Direct

Memory Access (DMA) engine.

▪ The latency of the CAN controller and CAN

transceiver stems from hardware delays. Therefore,

we can’t reduce it on Arduino. However, the

GR712, which we are considering using on flight,

has a better CAN controller and CAN transceiver,

so its latency is significantly lesser. The details are

shown in table 7.

© 2020. California Institute of Technology. Government sponsorship acknowledged 7

Table 7: Latency of the CAN controller and

transceiver

Table 7: Latency of the CAN controller and transceiver

▪ The latency of the bit stuffing: CAN protocol

requires a bit of the opposite polarity to be inserted

into the message by the CAN controller whenever

5 continuous bits of the same polarity are

transmitted to ensure enough transitions to maintain

synchronization [9]. The bit stuffing increases the

maximum transmission time of CAN messages by

nearly 20% in the worst case, as shown in table 8.

The time taken for bit stuffing is dependent on the

data.

Table 8: Measure latency of the Arduino

8. Future work

In the future we intend to design and develop the

CAN bus using CAN FD because of its advances from

standard CAN. These advances include a bigger data

frame, and higher speed.

- Big data frame: With the increased data frame size of

64 bytes per data frame, we can reduce the overhead by

transferring all of our telemetry in one message. With

64 data frame, 1 CAN FD message can include all the

data for 1 motor card (telemetry from 3 motors).

- Higher Speed: The speed of CAN FD can go up to

12Mb/s. This is 10 times faster than Standard CAN.

With the higher speed, CAN FD can reduce

transmission time. Therefore, the bus will have more

free time and allow more active motor controllers to

communicate over a single bus.

9. Conclusion

Our CAN bus simulation using Arduinos and CAN

Bus Shields is similar to the actual CAN bus network

control process on the proposed Europa Lander. This

method provides us a means of simulating the CAN bus

enough to assess its applicability to Europa Lander.

This system allowed us to easily change simulation

parameters, and measure system throughput and

latency. We found the Arduino simulation to have

high latency when compared to our flight GR712

processor. This is due to slower microprocessor and

non-flight like CAN bus shield..

In this paper we looked at Standard CAN and CAN

FD. We showed that Standard CAN bus (CAN2.0A)

would not work as initially as required. The bus was

not able to keep up with 512hz messages required to

close the motor control loops. However, in the future,

we will be closing these loops within the FPGA which

reducing the bandwidth requirements for the system. In

that case, Standard CAN will work for us.

10. Acknowledgement

This research was carried out at the Jet Propulsion

Laboratory, California Institute of Technology,

under a contract with the National Aeronautics and

Space Administration (80NM0018D0004).

11. References

1. Europa Lander Mission Concept Overview. (PDF)

Grace Tan-Wang, Steve Sell. Jet Propulsion

Laboratory, NASA. AbSciCon2019, Bellevue, WA

- June 26, 2019.

2. G. Bolotin, D. Hunter, D. Sheldon, Y. He and D.

Foor, "Compact low power avionics for the Europa

Lander concept and other missions to ocean

worlds," 2018 IEEE Aerospace Conference, Big

Sky, MT, 2018, pp. 1-11, doi:

10.1109/AERO.2018.8396418.

3. Y. Lv, W. Tian and S. Yin, "Design and

Confirmation of a CAN bus Controller Model with

Simple User Interface," 2015 Fifth International

Conference on Instrumentation and Measurement,

Computer, Communication and Control (IMCCC),

Qinhuangdao, 2015, pp. 640-644, doi:

10.1109/IMCCC.2015.140.

4. Anthony, P.L, H.B Crawley, P.-A Fischer, R.L

Mckay, and W.T Meyer. "CANbus and

Microcontroller Use in the BaBar Detector at

SLAC." 1999 IEEE Conference on Real-Time

Computer Applications in Nuclear Particle and

Plasma Physics. 11th IEEE NPSS Real Time

Conference. Conference Record (Cat.

No.99EX295) 47 (1999): 260-63. Web.

5. Corrigan, S., 2016. Introduction to The Controller

Area Network (CAN). [pdf] Texas Instrument.

Available at: <https://www.ti.com/lit/an/sloa101b/

Platform

Part CAN Controller CAN Transceiver CAN Controller CAN Transceiver

Chip name
MCP2515 MCP2551 SJA1000 UT64CAN333x

Total delay for

input and

output 200-2100ns 1240ns + 5us 40ns 745ns + 1.5us

Arduino GR712

Unit in Microsecond (µs)

Speed of CAN BUS (kbps) 1000kbps 500kbps 1000kbps 500kbps 1000kbps 500kbps

Sending Poke msg - No data 156 208 44 88 112 120

Sending CAN msg with "AA" 8

bytes data - prevent stuff bit
228 336 108 216 120 120

Sending CAN msg with " FF" 8

bytes data - expected stuff bit
256 364 120 240 136 124

Closing loop 1 - 1 poke and 1

response "AA"
476 620 152 304 324 316

Closing loop 1 - 1 poke and 1

response "FF"
492 664 164 328 328 336

Closing loop 3 - 1 poke 3

response
964 1324 402 804 562 520

Measured with Arduino
Theory - Ideal - no

process
Latency

© 2020. California Institute of Technology. Government sponsorship acknowledged 8

sloa101b.pdf?ts=1597936955031> [Accessed 20

August 2020].

6. J. M. Giron-Sierra, C. Insaurralde, M. Seminario, J.

F. Jiménez and P. Klose, "CANbus-based

distributed fuel system with smart components,"

in IEEE Transactions on Aerospace and Electronic

Systems, vol. 44, no. 3, pp. 897-912, July 2008, doi:

10.1109/TAES.2008.4655351.

7. Y. Xie, P. Huang, W. Liang and Y. He,

"Comparison between CAN and CAN FD: A

Quantified Approach," 2017 IEEE International

Symposium on Parallel and Distributed

Processing with Applications and 2017 IEEE

International Conference on Ubiquitous

Computing and Communications (ISPA/IUCC),

Guangzhou, 2017, pp. 1399-1403, doi:

10.1109/ISPA/IUCC.2017.00212.

8. N. Yee, P. Chand and S. Foehst, "Student Designed

CANBus Simulator Used as Teaching Aid in

Autotronics Course," 2017 4th Asia-Pacific World

Congress on Computer Science and Engineering

(APWC on CSE), Nadi, 2017, pp. 82-87, doi:

10.1109/APWConCSE.2017.00023.

9. J. M. Giron-Sierra, C. Insaurralde, M. Seminario

and J. F. Jimenez, "Distributed control system for

fuel management using CANbus," The 23rd Digital

Avionics Systems Conference (IEEE Cat.

No.04CH37576), Salt Lake City, UT, USA, 2004,

pp. 8.D.2-8.1, doi: 10.1109/DASC.2004.1390770.

10. Mary, G. I., Alex, Z. C., & Jenkins, L. (2013).

Response Time Analysis of Messages in Controller

Area Network: A Review. Journal of Computer

Networks and Communications, 2013, 1-11.

doi:10.1155/2013/148015

Biography
Hieu Tran is currently a full-time

intern in Summer 2020 and part-

time in Fall 2020 at NASA Jet

Propulsion Laboratory. He will be

graduating from California

Polytechnic University, Pomona

in December 2020 with a B.S in

Electrical Engineering. Upon graduation with

GPA 3.96, his dream is to be a member of the JPL

motor control team. Being named on Dean’s

Honor List and President’s Honor list in 2018,

2019, 2020 and being selected for Chevron

Scholarship, Edison Scholarship, Robert R

Sprague Scholarship, and so on while studying at

Cal Poly Pomona.

Gary Bolotin received a B.S. in

Engineering from Illinois Institute

of Technology in 1984 and a M.S.

in Engineering from University of

Illinois at Urbana Champaign in

1985. He has been with JPL for

more than 34 years. He is currently

the lead for the Europa Lander

Motor Controller. He has also managed

engineering teams as both teams leads and line

manager at the section and group level.

Ben Cheng holds a B.S. in

Electrical Engineering from

California Polytechnic University,

Pomona. He is currently working

at NASA Jet Propulsion

Laboratory as a member of the

Motor Control Card Development

Team since 2018. Ben is supporting the test and

development of the Europa Lander motor control

modules and board designs. Prior to joining JPL,

he was the Vice President and a Board of Director

for MAG Laboratory (a makerspace) and the head

of multiple Robotics-centered student

organizations and projects.

© 2020. California Institute of Technology. Government sponsorship acknowledged 9

Allen Sirota is the technical

group supervisor of the Robotic

Actuation and Sensing Group at

NASA Jet Propulsion

Laboratory, California Institute

of Technology, where he has

been since 1983. He received his

B.S. degree in Electronics Engineering from the

University of California, Los Angeles, in 1976.

Allen Sirota received the 1997 NASA Exceptional

Engineering Achievement Medal for his

contributions to the Mars Pathfinder Sojourner

Rover mission.

Malcolm Lias holds a B. S. in

Electrical Engineering from

Rochester Institute of Technology.

He is currently developing Motor

Control Card for Europa Lander at

Jet Propulsion Laboratory (JPL).

Testing and documenting the Distributed Motor

Control Multi-Chip Module for use on the Europa

Lander. Prior to joining JPL, Malcom worked for

Word Inc where he was responsible for design,

product support, and testing of control electronics

for missiles, smart bombs, and aircraft.

